
Chapter 8

Estimation

8.1 The estimation game

Let’s play a game. I’ll think of a distribution, and you have to guess what it
is. We’ll start out easy and work our way up.

I’m thinking of a distribution. I’ll give you two hints; it’s a normal distribution,
and here’s a random sample drawn from it:

{−0.441, 1.774, −0.101, −1.138, 2.975, −2.138}

What do you think is the mean parameter, µ, of this distribution?

One choice is to use the sample mean to estimate µ. Up until now we have
used the symbol µ for both the sample mean and the mean parameter, but
now to distinguish them I will use x̄ for the sample mean. In this example,
x̄ is 0.155, so it would be reasonable to guess µ = 0.155.

This process is called estimation, and the statistic we used (the sample
mean) is called an estimator.

Using the sample mean to estimate µ is so obvious that it is hard to imagine
a reasonable alternative. But suppose we change the game by introducing
outliers.

I’m thinking of a distribution. It’s a normal distribution, and here’s a sam-
ple that was collected by an unreliable surveyor who occasionally puts the
decimal point in the wrong place.

{−0.441, 1.774, −0.101, −1.138, 2.975, −213.8}
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Now what’s your estimate of µ? If you use the sample mean your guess is
−35.12. Is that the best choice? What are the alternatives?

One option is to identify and discard outliers, then compute the sample
mean of the rest. Another option is to use the median as an estimator.

Which estimator is the best depends on the circumstances (for example,
whether there are outliers) and on what the goal is. Are you trying to mini-
mize errors, or maximize your chance of getting the right answer?

If there are no outliers, the sample mean minimizes the mean squared error
(MSE). If we play the game many times, and each time compute the error
x̄ − µ, the sample mean minimizes

MSE =
1
m ∑(x̄− µ)2

Where m is the number of times you play the estimation game (not to be
confused with n, which is the size of the sample used to compute x̄).

Minimizing MSE is a nice property, but it’s not always the best strategy.
For example, suppose we are estimating the distribution of wind speeds
at a building site. If we guess too high, we might overbuild the structure,
increasing its cost. But if we guess too low, the building might collapse.
Because cost as a function of error is asymmetric, minimizing MSE is not
the best strategy.

As another example, suppose I roll three six-sided dice and ask you to pre-
dict the total. If you get it exactly right, you get a prize; otherwise you get
nothing. In this case the value that minimizes MSE is 10.5, but that would
be a terrible guess. For this game, you want an estimator that has the high-
est chance of being right, which is a maximum likelihood estimator (MLE).
If you pick 10 or 11, your chance of winning is 1 in 8, and that’s the best you
can do.

Exercise 8.1 Write a function that draws 6 values from a normal distribution
with µ = 0 and σ = 1. Use the sample mean to estimate µ and compute the
error x̄ − µ. Run the function 1000 times and compute MSE.

Now modify the program to use the median as an estimator. Compute MSE
again and compare to the MSE for x̄.

8.2 Guess the variance
I’m thinking of a distribution. It’s a normal distribution, and here’s a (familiar)
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sample:

{−0.441, 1.774, −0.101, −1.138, 2.975, −2.138}

What do you think is the variance, σ2, of my distribution? Again, the ob-
vious choice is to use the sample variance as an estimator. I will use S2to
denote the sample variance, to distinguish from the unknown parameter
σ2.

S2 =
1
n ∑(xi − x̄)2

For large samples, S2is an adequate estimator, but for small samples it tends
to be too low. Because of this unfortunate property, it is called a biased
estimator.

An estimator is unbiased if the expected total (or mean) error, after many
iterations of the estimation game, is 0. Fortunately, there is another simple
statistic that is an unbiased estimator of σ2:

S2
n−1 =

1
n− 1 ∑(xi − x̄)2

The biggest problem with this estimator is that its name and symbol are
used inconsistently. The name “sample variance” can refer to either S2or
S2

n−1, and the symbol S2is used for either or both.

For an explanation of why S2is biased, and a proof that S2
n−1is unbiased, see

http://wikipedia.org/wiki/Bias_of_an_estimator.

Exercise 8.2 Write a function that draws 6 values from a normal distribution
with µ = 0 and σ = 1. Use the sample variance to estimate σ2 and compute
the error S2 − σ2. Run the function 1000 times and compute mean error (not
squared).

Now modify the program to use the unbiased estimator S2
n−1. Compute the

mean error again and see if it converges to zero as you increase the number
of games.

8.3 Understanding errors

Before we go on, let’s clear up a common source of confusion. Properties
like MSE and bias are long-term expectations based on many iterations of
the estimation game.
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While you are playing the game, you don’t know the errors. That is, if I
give you a sample and ask you to estimate a parameter, you can compute
the value of the estimator, but you can’t compute the error. If you could,
you wouldn’t need the estimator!

The reason we talk about estimation error is to describe the behavior of
different estimators in the long run. In this chapter we run experiments to
examine those behaviors; these experiments are artificial in the sense that
we know the actual values of the parameters, so we can compute errors.
But when you work with real data, you don’t, so you can’t.

Now let’s get back to the game.

8.4 Exponential distributions
I’m thinking of a distribution. It’s an exponential distribution, and here’s a
sample:

{5.384, 4.493, 19.198, 2.790, 6.122, 12.844}

What do you think is the parameter, λ, of this distribution?

In general, the mean of an exponential distribution is 1/λ, so working back-
wards, we might choose

λ̂ = 1 / x̄

It is common to use hat notation for estimators, so λ̂ is an estimator of λ.
And not just any estimator; it is also the MLE estimator1. So if you want to
maximize your chance of guessing λ exactly, λ̂ is the way to go.

But we know that x̄ is not robust in the presence of outliers, so we expect λ̂
to have the same problem.

Maybe we can find an alternative based on the sample median. Remem-
ber that the median of an exponential distribution is ln(2) / λ, so working
backwards again, we can define an estimator

λ̂1/2 = ln(2)/µ1/2

where µ1/2 is the sample median.

Exercise 8.3 Run an experiment to see which of λ̂ and λ̂1/2 yields lower
MSE. Test whether either of them is biased.

1See http://wikipedia.org/wiki/Exponential_distribution#Maximum_

likelihood.
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8.5 Confidence intervals
So far we have looked at estimators that generate single values, known as
point estimates. For many problems, we might prefer an interval that spec-
ifies an upper and lower bound on the unknown parameter.

Or, more generally, we might want that whole distribution; that is, the range
of values the parameter could have, and for each value in the range, a notion
of how likely it is.

Let’s start with confidence intervals.

I’m thinking of a distribution. It’s an exponential distribution, and here’s a
sample:

{5.384, 4.493, 19.198, 2.790, 6.122, 12.844}

I want you to give me a range of values that you think is likely to contain the
unknown parameter λ. More specifically, I want a 90% confidence interval,
which means that if we play this game over and over, your interval will
contain λ 90% of the time.

It turns out that this version of the game is hard, so I’m going to tell you the
answer, and all you have to do is test it.

Confidence intervals are usually described in terms of the miss rate, α, so a
90% confidence interval has miss rate α = 0.1. The confidence interval for
the λ parameter of an exponential distribution is(

λ̂
χ2(2n, 1− α/2)

2n
, λ̂

χ2(2n, α/2)
2n

)
where n is the sample size, λ̂ is the mean-based estimator from the previous
section, and χ2(k, x) is the CDF of a chi-squared distribution with k degrees
of freedom, evaluated at x (see http://wikipedia.org/wiki/Chi-square_

distribution).

In general, confidence intervals are hard to compute analytically, but rel-
atively easy to estimate using simulation. But first we need to talk about
Bayesian estimation.

8.6 Bayesian estimation
If you collect a sample and compute a 90% confidence interval, it is tempting
to say that the true value of the parameter has a 90% chance of falling in the
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interval. But from a frequentist point of view, that is not correct because the
parameter is an unknown but fixed value. It is either in the interval you
computed or not, so the frequentist definition of probability doesn’t apply.

So let’s try a different version of the game.

I’m thinking of a distribution. It’s an exponential distribution, and I chose
λ from a uniform distribution between 0.5 and 1.5. Here’s a sample, which
I’ll call X:

{2.675, 0.198, 1.152, 0.787, 2.717, 4.269}

Based on this sample, what value of λ do you think I chose?

In this version of the game, λ is a random quantity, so we can reasonably talk
about its distribution, and we can compute it easily using Bayes’s theorem.

Here are the steps:

1. Divide the range (0.5, 1.5) into a set of equal-sized bins. For each bin,
we define Hi, which is the hypothesis that the actual value of λ falls in
the i th bin. Since λ was drawn from a uniform distribution, the prior
probability, P(Hi), is the same for all i.

2. For each hypothesis, we compute the likelihood, P(X|Hi), which is
the chance of drawing the sample X given Hi.

P(X | Hi) = ∏
j

expo(λi, xj)

where expo(λ, x) is a function that computes the PDF of the exponen-
tial distribution with parameter λ, evaluated at x.

PDFexpo(λ, x) = λe−λx

The symbol ∏ represents the product of a sequence (see http://

wikipedia.org/wiki/Multiplication#Capital_Pi_notation).

3. Then by Bayes’s theorem the posterior distribution is

P(Hi|X) = P(Hi) P(X|Hi) / f

where f is the normalization factor

f = ∑
i

P(Hi)P(X | Hi)



8.7. Implementing Bayesian estimation 99

Given a posterior distribution, it is easy to compute a confidence interval.
For example, to compute a 90% CI, you can use the 5th and 95th percentiles
of the posterior.

Bayesian confidence intervals are sometimes called credible intervals; for a
discussion of the differences, see http://wikipedia.org/wiki/Credible_

interval.

8.7 Implementing Bayesian estimation

To represent the prior distribution, we could use a Pmf, Cdf, or any other
representation of a distribution, but since we want to map from a hypothesis
to a probability, a Pmf is a natural choice.

Each value in the Pmf represents a hypothesis; for example, the value 0.5
represents the hypothesis that λ is 0.5. In the prior distribution, all hypothe-
ses have the same probability. So we can construct the prior like this:

def MakeUniformSuite(low, high, steps):

hypos = [low + (high-low) * i / (steps-1.0) for i in range(steps)]

pmf = Pmf.MakePmfFromList(hypos)

return pmf

This function makes and returns a Pmf that represents a collection of related
hypotheses, called a suite. Each hypothesis has the same probability, so the
distribution is uniform.

The arguments low and high specify the range of values; steps is the num-
ber of hypotheses.

To perform the update, we take a suite of hypotheses and a body of evi-
dence:

def Update(suite, evidence):

for hypo in suite.Values():

likelihood = Likelihood(evidence, hypo)

suite.Mult(hypo, likelihood)

suite.Normalize()

For each hypothesis in the suite, we multiply the prior probability by the
likelihood of the evidence. Then we normalize the suite.

In this function, suite has to be a Pmf, but evidence can be any type, as
long as Likelihood knows how to interpret it.
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Here’s the likelihood function:

def Likelihood(evidence, hypo):

param = hypo

likelihood = 1

for x in evidence:

likelihood *= ExpoPdf(x, param)

return likelihood

In Likelihood we assume that evidence is a sample from an exponential
distribution and compute the product in the previous section.

ExpoPdf evaluates the PDF of the exponential distribution at x:

def ExpoPdf(x, param):

p = param * math.exp(-param * x)

return p

Putting it all together, here’s the code that creates the prior and computes
the posterior:

evidence = [2.675, 0.198, 1.152, 0.787, 2.717, 4.269]

prior = MakeUniformSuite(0.5, 1.5, 100)

posterior = prior.Copy()

Update(posterior, evidence)

You can download the code in this section from http://thinkstats.com/

estimate.py.

When I think of Bayesian estimation, I imagine a room full of people, where
each person has a different guess about whatever you are trying to estimate.
So in this example they each have a guess about the correct value of λ.

Initially, each person has a degree of confidence about their own hypothesis.
After seeing the evidence, each person updates their confidence based on
P(E|H), the likelihood of the evidence, given their hypothesis.

Most often the likelihood function computes a probability, which is at most
1, so initially everyone’s confidence goes down (or stays the same). But then
we normalize, which increases everyone’s confidence.

So the net effect is that some people get more confident, and some less,
depending on the relative likelihood of their hypothesis.
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8.8 Censored data

The following problem appears in Chapter 3 of David MacKay’s Informa-
tion Theory, Inference and Learning Algorithms, which you can download from
http://www.inference.phy.cam.ac.uk/mackay/itprnn/ps/.

Unstable particles are emitted from a source and decay at a dis-
tance x, a real number that has an exponential probability distri-
bution with [parameter] λ. Decay events can only be observed
if they occur in a window extending from x = 1 cm to x = 20 cm.
n decays are observed at locations { x1, ... , xN }. What is λ?

This is an example of an estimation problem with censored data; that is, we
know that some data are systematically excluded.

One of the strengths of Bayesian estimation is that it can deal with censored
data with relative ease. We can use the method from the previous section
with only one change: we have to replace PDFexpo with the conditional dis-
tribution:

PDFcond(λ, x) = λe−λx/Z(λ)

for 1 < x < 20, and 0 otherwise, with

Z(λ) =
∫ 20

1
λe−λx dx = e−λ − e−20λ

You might remember Z(λ) from Exercise 6.5. I told you to keep it handy.

Exercise 8.4 Download http://thinkstats.com/estimate.py, which con-
tains the code from the previous section, and make a copy named decay.py.

Modify decay.py to compute the posterior distribution of λ for the sample
X = {1.5, 2, 3, 4, 5, 12}. For the prior you can use a uniform distribution
between 0 and 1.5 (not including 0).

You can download a solution to this problem from http://thinkstats.

com/decay.py.

Exercise 8.5 In the 2008 Minnesota Senate race the final vote count was
1,212,629 votes for Al Franken and 1,212,317 votes for Norm Coleman.
Franken was declared the winner, but as Charles Seife points out in Proofi-
ness, the margin of victory was much smaller than the margin of error, so
the result should have been considered a tie.
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Assuming that there is a chance that any vote might be lost and a chance that
any vote might be double-counted, what is the probability that Coleman
actually received more votes?

Hint: you will have to fill in some details to model the error process.

8.9 The locomotive problem

The locomotive problem is a classic estimation problem also known as the
“German tank problem.” Here is the version that appears in Mosteller, Fifty
Challenging Problems in Probability:

“A railroad numbers its locomotives in order 1..N. One day you
see a locomotive with the number 60. Estimate how many loco-
motives the railroad has.”

Before you read the rest of this section, try to answer these questions:

1. For a given estimate, N̂, what is the likelihood of the evidence,
P(E|N̂)? What is the maximum likelihood estimator?

2. If we see train i it seems reasonable that we would guess some mul-
tiple of i so let’s assume N̂ = ai. What value of a minimizes mean
squared error?

3. Still assuming that N̂ = ai can you find a value of a that makes N̂ an
unbiased estimator?

4. For what value of N is 60 the average value?

5. What is the Bayesian posterior distribution assuming a prior distribu-
tion that is uniform from 1 to 200?

For best results, you should take some time to work on these questions be-
fore you continue.

For a given estimate, N̂, the likelihood of seeing train i is 1/N̂ if i ≤ N̂, and
0 otherwise. So the MLE is N̂ = i. In other words, if you see train 60 and
you want to maximize your chance of getting the answer exactly right, you
should guess that there are 60 trains.

But this estimator doesn’t do very well in terms of MSE. We can do better
by choosing N̂ = ai; all we have to do is find a good value for a.
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Suppose that there are, in fact, N trains. Each time we play the estimation
game, we see train i and guess ai, so the squared error is (ai − N)2.

If we play the game N times and see each train once, the mean squared error
is

MSE =
1
N

N

∑
i=1

(ai− N)2

To minimize MSE, we take the derivative with respect to a:

dMSE
da

=
1
N

N

∑
i=1

2i(ai− N) = 0

And solve for a.
a =

3N
2N + 1

At first glance, that doesn’t seem very useful, because N appears on the
right-hand side, which suggests that we need to know N to choose a, but if
we knew N, we wouldn’t need an estimator in the first place.

However, for large values of N, the optimal value for a converges to 3/2, so
we could choose N̂ = 3i/ 2.

To find an unbiased estimator, we can compute the mean error (ME):

ME =
1
N

N

∑
i=1

(ai− N)

And find the value of a that yields ME = 0, which turns out to be

a =
2N

N + 1

For large values of N, a converges to 2, so we could choose N̂ = 2i.

So far we have generated three estimators, i, 3i/2, and 2i, that have the
properties of maximizing likelihood, minimizing squared error, and being
unbiased.

Yet another way to generate an estimator is to choose the value that makes
the population mean equal the sample mean. If we see train i, the sample
mean is just i; the train population that has the same mean is N̂ = 2i − 1.
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Figure 8.1: Posterior distribution of the number of trains.

Finally, to compute the Bayesian posterior distribution, we compute

P(Hn | i) =
P(i | Hn)P(Hn)

P(i)

Where Hn is the hypothesis that there are n trains, and i is the evidence: we
saw train i. Again, P(i|Hn) is 1/n if i < n, and 0 otherwise. The normalizing
constant, P(i), is just the sum of the numerators for each hypothesis.

If the prior distribution is uniform from 1 to 200, we start with 200 hypothe-
ses and compute the likelihood for each. You can download an implementa-
tion from http://thinkstats.com/locomotive.py. Figure 8.1 shows what
the result looks like.

The 90% credible interval for this posterior is [63, 189], which is still quite
wide. Seeing one train doesn’t provide strong evidence for any of the hy-
potheses (although it does rule out the hypotheses with n < i).

If we start with a different prior, the posterior is significantly different,
which helps to explain why the other estimators are so diverse.

One way to think of different estimators is that they are implicitly based
on different priors. If there is enough evidence to swamp the priors, then
all estimators tend to converge; otherwise, as in this case, there is no single
estimator that has all of the properties we might want.

Exercise 8.6 Generalize locomotive.py to handle the case where you see
more than one train. You should only have to change a few lines of code.
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See if you can answer the other questions for the case where you see more
than one train. You can find a discussion of the problem and several solu-
tions at http://wikipedia.org/wiki/German_tank_problem.

8.10 Glossary
estimation: The process of inferring the parameters of a distribution from

a sample.

estimator: A statistic used to estimate a parameter.

mean squared error: A measure of estimation error.

maximum likelihood estimator: An estimator that computes the point es-
timate with the highest likelihood.

bias: The tendency of an estimator to be above or below the actual value of
the parameter, when averaged over repeated samples.

point estimate: An estimate expressed as a single value.

confidence interval: An estimate expressed as an interval with a given
probability of containing the true value of the parameter.

credible interval: Another name for a Bayesian confidence interval.

censored data: A dataset sampled in a way that systematically excludes
some data.


